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Quadrature Formulae for Cauchy Principal Value 
Integrals of Oscillatory Kind 

By G. E. Okecha 

Abstract. The problem considered is that of evaluating numerically an integral of the form 
fJ1 e'wf (x) dx, where f has one simple pole in the interval [-1, 1]. Modified forms of the 
Lagrangian interpolation formula, taking account of the simple pole are obtained, and form 
the bases for the numerical quadrature rules obtained. Further modification to deal with the 
case when an abscissa in the interpolation formula is coincident with the pole is also 
considered. An error bound is provided and some numerical examples are given to illustrate 
the formulae developed. 

1. Introduction. The numerical evaluation of finite Fourier integrals of the form 

(1.1) |1 eI'xf(x)dx, > 0, i2 = -1, 

has wide applications in applied mathematics, physics and engineering. If X is large, 
the integrand is highly oscillatory, and classical methods of integration are unsuita- 
ble. Here, f is sufficiently smooth, usually analytic, in the range of integration 

[-1,1]. 
The earliest numerical method for the treatment of (1.1) is probably due to Filon 

[6] who approximates f by second-degree polynomials over an even number of 
subintervals and analytically integrates out the crippling oscillatory factor. Full 
details of this method are also given in Davis and Rabinowitz [4, Eq. (2.10.2)]. 

A notable later work is that due to Luke [14], who approximates f by polynomials 
of degree < 10. Since then, a considerable literature has evolved on the subject, and 
in this connection one may see [2], [12], [17], [18], [22]. 

In this paper we are concerned with the evaluation of the integral 
1 

(1.2) I(T,CO)= el g(x ) dx, -1< T <1, 

where g is analytic for -1 < x < 1 and g(T) 0 0. The integral (1.2) has two 
practical difficulties-it is oscillatory and has a singularity of Cauchy type; for the 
latter see [3], [9], [11], [13], [16]. To deal with these pertinent problems, we present a 
method based on a modified Lagrangian interpolation formula and on properties of 
orthogonal polynomials. 
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Given the distinct points x1, x2, .. ., -Xn such that the values of some function p 
are defined and known at these points, it is known [20] that there exists a unique 
polynomial hn- 1 of degree n - 1 such that hfn-(XK ) = P(XK ), K = 1,.., n. This 
interpolating polynomial hn n-I written in Lagrangian form, is 

n 

(1.3) hn-=(X) ? P(XK)l.(x), 
l=1 

where the polynomials 1K' the Lagrange coefficients, are given by 

(1.4) 1i(x) = W(x) 
Wn(xK)(X 

- X.) 

and 
n 

(1.5) wn(x) = H (X - XK) 

Clearly, 

(1 .6) 1, (XK) 1K 
= 

1 IK. 

Throughout the rest of this paper we shall assume that the set X = { x1, x2,.. ., x,J 
is the set of zeros of a polynomial of degree n from an orthogonal sequence with 
respect to a nonnegative weight function w in (-1, 1). Therefore, the set X is 
distinct. 

The basis of our quadrature formulae is a modification of (1.3). 

2. Description of Method. Suppose Un(g; ) is the Lagrange interpolation poly- 
nomial of degree n interpolating to g at the element-points of X and at T. Then we 
have 

(2.1) Un(g; X) = (X ) E 
lK(X)g(XK) + 

Wn(X)g(T) 
X(K = T. 

Kl XK -T Wn(T)K 

Thus, 
(2.2) g(x) Un(g; x) + en(g; x), 

where en(g; x) is the error due to the interpolation formula and is given as 

(2.3) en(g; x) = (x - T)wn(x)g[x, x1, x2, . . ., xn, T]. 

Here, g[x, x1, x2, . . .Xn, T] is the (n + 1)st divided difference of g corresponding to 
the abscissae x, x1, x2,. ., --, XT. 

From [1, Eq. (25.1.8)], 

(2.4) g[X, XI, X2, .,X T]' ~ g(z) dz 
.2Ti (z - T)(Z - X)Wn(z) 

where C is a contour containing the points x, x1, x2,... .X, T in its interior and g is 
analytic in the interior of C. 

Now, multiplying (2.2) through by e "x/(x - T) and integrating over (-1,1) in 
the CPV sense, one gets 

(E (XK) K e)W() W(X) dx g(T) eCx w(X)dx 

(2.5) 1 

+ f e'fiXw (x)g[x, xI, x2, xn, T] dx. 
-1 
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Suppose M, a multiple of wn, is the orthogonal polynomial whose zeros are the 
elements of the set X; then, 

(2.6) I(T, ) = g(x ) 
Zf(x1,&.) + g(T)Zn( T.o) + E (T, ), 

=1(XK -)M( Mn(T) 

where 

(2.7) Zn (a w) @X (wx~n- < a < 1 

x--1 

(2.8) E (I &I) = 1 { g(z)dz ji eiwxMn(x)dx 
27 'C (z - T)Mn (z) I -x 

and En(r, w) is the error due to the quadrature rule. In Section 7 we shall obtain a 
bound for En(T, o) for a particular Mn. By construction, En(T, W) = 0 whenever g is 
a polynomial of degree < n. 

3. Evaluating Zn(a, o). We describe two ways of evaluating Zn(a, W). 

(i) If a is not a zero of Mn and Zn(a, o) is not known analytically, perhaps the 
most convenient way to evaluate Zn(a, co) is from a recursion equation which can be 
established as follows. 

It is common knowledge that the orthogonal polynomials Mr(x) satisfy a relation 
of the form 

(3.1) Mr+1(x) = (Ar + Brx)Mr(x) - CrMri,(x), r = 0,1,..., 

with Br> 0, Cr> 0, MO = 1, M1 =AO+ Box, M1 =0. 
In view of (2.7) and (3.1) it can be shown that 

(3 .2) Zr+,(a, cw) = (Ar + Bra)Zr (a, ) - CrZr-l(a, o) + BrZr( X) , 
(3.2) rr 

~~~~~~~~~~~~~~r = 0,1 .. 

where 

(3.3) 2r(W) f eiWX r(x)dx 
-1 

and Zr(W) may be evaluated analytically or can be sufficiently approximated using 
any rule designed for oscillatory functions, e.g. [2], [181. 

The inhomogeneous three-term recurrence relation (3.2) is stable in the forward 
direction provided that jal < 1; otherwise, instability sets in and a procedure such as 
that given by Miller [15, p. xviii must be used. The starting values are 

(3.4) ZO(a, co)= f 
-1- 

and, as is easily seen from (3.2), 

sin co 
(3.5) Z, (a, c) = (AO + a) ZO (a, co) + 2Bo0 

where Alp Bo are the coefficients in Ml(x) = AO + Box. 
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Let z be complex, z = x + iy, i = . For z (-1,1), set 

(3.6) q(z) =f1 I(x)dx 

where ,B is a smooth function of x in [- 1, 1]. Further, if z e (-1, 1), with the 
convention that q(z) = [q(z + Oi) - q(z - Oi)], - 1 < z < 1, it is easy to see that 

(3.7) q(z) = f z -x dx. 

Using this in [8, Eq. 2.641, nos. 1 and 2], we obtain 
1 

Re[ZO(a, co)] = cos x dx = coscoaCi(ul) - sincoaSi(ul) 

(3.8) - a 
+ sinaco Si(u2) - cos aco Ci(u2), 

1 

Im[Zo(a, co)] = fs x 
= cos aco Si(ul) + sin aco Ci(ul) 

(3.9) - 1 

- cos aco Si(u2) - sinaco Ci u2), 
where 

(3.10) u= co(1 - a), u2= -co(1 + a), 
and Ci and Si are the cosine and sine integrals, respectively. 

(ii) If a is a zero of Mj(x), then Zn (a, o) may be expressed as follows on using 
the Christoffel-Darboux identity, 

n-1 

(3.11) Zn(a, co) = E dmMm(a)Zm(w), 
m=0 

-kn + _h 
(3.12) d = hn 1 

kn hm Mn+1(a)' 

where 

(3.13) hn=f| w(x)M,2(x)dx 

and kn is the coefficient of Xn in Mn(x). The pairs (hr, kr) have been tabulated [1] 
for some orthogonal polynomials. Note, however, that the method of (3.2) is still 
valid in this case. 

4. Application with the Legendre Polynomials. We assume now that the orthogonal 
polynomials Mr(x) are the Legendre polynomials Pr(x) whose zeros now form the 
set X = {x1, X2,. .., xr). Therefore, 

-1- (4.1) Z'1((') = nxP P (x) - -P1(<x) 1 

(4.2) M,(x) = P'(x) =xn(x) -nPn_,(x) x 0 +1. 

Thus from (2.6) we have the approximate rule 
( 4 .3 ) I,,(T. ) f P (( - X)g(X)Z(X, )() g(T)Z,,(T, CO) 

(43)IjTCO =- + X'K T. 

=1I nP,l-(XK)(XK - T) Pn (T) K 
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The Legendre polynomials Pr(x) satisfy the recurrence relation 

(4.4) (r + I)Pr+i(x) -(2r + I)xPr(x) + rPri,(x) = 0, 

and from (4.1) and (4.4) we obtain [cf. (3.2)] 

(4.5) (r + 1)Zr+1(a, ac) = (2r + 1)aZr(a, co) - rZr1(a, Ax) + (2r +)r( )' 
r= 0,1,1.... 

where 

Re[Zr(0)] = Cos xxPr(x) dx = 2(1)k j2k(), 
(4.6)- 

r= 2kk = 0,1,.... 

Im[2r(CO)] f1 sin xxPr(x) dx = 2(-1) i2k+1(ax), 

r = 2k + 1, k = 0O1, ... . 

and where jK(x) are the spherical Bessel functions of the first kind, which can be 
evaluated as in [1, Eq. (10.5)]. 

In view of (3.5), 

2 sin co 
(4.8) Re[Z,(a, CO)] = + aRe[ZO(a, ax)], 

(4.9) Im[Z1(a, ax)] = alm[ZO(a, a)], 

with ZO(a, ax) as in (3.8), (3.9). 
Since XK is a zero of P,(X), then from (3.11), (3.12) we may write 

1 n-1 
(4.10) Z (XKaCO) = - 

(n + +)P+I(X ) E (2m + 1)Pm (XK)2mG(a) 

5. Extension. We now assume that an element of X, say x5, coincides with T, i.e., 

Xs =Ta X = XlX2 ... ,T,-..--X,Xt} 

Then, with Un(g; ) the Lagrangian polynomial which interpolates to g at 
x1, x2, ..., xs, .. . ., Xn and to g' at x5, we have as in [3], 

Unk(g; X) = (X - T') ) + [I - 15(T)(X - T )] 1 (X)g(T) 
K=1 K 

(5.1) K*S 

+(X- )l(X)g'(T). 

Thus, 

(5.2) g(x) = ?n(g; X) + en(g; X). 

Again, multiplying (5.2) through by eiwx/(x - x5), integrating over (-1, 1), and 
assuming as previously that the polynomials Mr are the Legendre polynomials Pr, 
we have the approximate rule 

K = )~ 9(X K) ( X K CO) Xs (5.3) lTraCO) =- : f(-x,)x)Zl a + g(T)Q, + Hg'(T), T = 
K=1 npfl-l(XK)(XK - T 
K*S 
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where 

(5.4) Hs= ( 
nPn-1(xs) 

Qs f x x [I - 
is(Xs)(X 

- xs)]elwxdx 

() -1 1~~~~ Pn(x)elwxdx 
- (1 - x~~~~~) f 

-is l(Xs) Hs 
nPn(*(xs) -1 (x - )2 S 

From the relations 

(1 - X2)P,'(x) - 2xPn(x) + n(n + I)Pn(x) = 0, 

(x2 - l)Pn(x) = nxPn(x) - nPn-I(x), 

and with the help of the L'Hospital rule we find 

(5.6) is, (Xs5) = 

1-Xs 

Using the Christoffel-Darboux identity, 

Pn(X) n-1 (2m + l)Pm(xs)Pm(x) 
(x - x5)2 (n + l)Pn+?(xs) m=O X - Xs 

In view of this, 
1 

nn-ilw 
(5.8) f P(x)e2 =-(x 1 (2m + 1)Pm(xs)Zm(xs, c). 

-1I (x -Xs)2 (n + I)Pn?1(xs) m=O 

Thus, 

Q ~~(Xs2-1 
( )~ ~ Q n(n + I)Pn-,(xs) Pn+,(xs) (5.9)nn+ ( -i 

*E (2m + 1) Pm (xs) Zm (xs, 4) + (Xs 1 )Hs. 

Introducing (5.4) and (5.9) into (5.3), we obtain the approximate rule. Again, by 
construction, this rule is exact whenever g is a polynomial of degree < n. 

Consider, in particular, the case T = 0. Let n be odd; then X(n+1)/2 = 0. With 

Xs X(n+ 1)/2 0, it follows from (5.3) and (5.9) that 

(5.10) In(0o,)= ( p)(X)Zn(X,) + g(0)Qs + Hsg'(O), 
K=1 npn-l(XxK) 
K S 

where 
_ ~~~n-1 

(5.11) Q5 n(n + I)P_, (o)Pn+?(O) L (2m ? 1)Pm(O)Zm(OW), 

0, r odd, 

(5.12) Pr(O) =(_)r/l2 
35 (r - 1) even. 

2 4 - r6revenr 
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We now describe a method closely related to that in Section 2. 
For a given n, let g be approximated by the Lagrange interpolation polynomial 

Un* 1(g; *) of degree n - 1. Then we may write 
n 

(5.13) Un-1(g; x) = YK 1(X)g( XK) 
Kl 

where XK E X as previously defined. 
Thus, 

(5.14) g(x) = Unb1(g; x) + e* 1(g; x) 

with the error e*1(g; x) = wn(x)g[x, x1, x2, ... , xn]. Again we multiply (5.14) 
through by ei@x/(x - T) and integrate over (-1, 1) in the CPV sense to obtain the 
quadrature formula 

(5.15) I(rT. ) = E g(F ) [ n J ' 8 '( Tj) + E *( C)O, X/ T. 
K=1 (K -)Mn(K 

where 

(5.16) E,*(r o) 1 I g(z) dz J eioxMn(x) dx 

n2,g ic M (Z) !~(Z - x)(x - T 

Furthermore, if a zero of Mn, say x5, coincides with T, i.e., x5 = T, then it can be 
readily shown from (5.15) that 

[ Zfl(x K,.CO) - Zn (T, CO)] g(T)Zn(T,CO) 
(5.17) I(T, ) = g(X) + + E *(T ). 

K1 (x~K - )Mn(K ,r 
KC*S 

The formulae (5.15) and (5.17) are exact whenever g is a polynomial of degree 
< n - 1. 

6. A Stable Algorithm. The quadrature rules given by (2.6), (4.3), (5.3), (5.15), and 
(5.17) are numerically unstable when X is close to one of the points xi; to avoid this, 
the following algorithm has been proposed [7], [16]. 

Let Pn -(g; -) be the polynomial of degree < n - 1 interpolating g at the zeros 

xi of Mn, written in the form 

n-1 
(6.1) Pn-1(g;x) = E aKM,(x). 

K0= 

By the discrete orthogonality property of orthogonal polynomials, 
n 

aK hj1 E41M"(xi)g(xi), K = 0 1 ... v n -1, 
i=1 

where {i is the Christoffel number corresponding to xi. Again, multiplying (6.1) 
through by eiwx/(x - T) and integrating over (-1,1) in the CPV sense yields 

n-1 

(6.2) I(T, W) = E aKZ(T CO) + En (, O). 
K=O 

The sum in (6.2) is most effectively evaluated by Clenshaw's algorithm [16]. 
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7. Bound on E((T-, ). Taking Mr as the Legendre polynomials Pr, we express the 
quadrature error E(,(T @) as [cf. (2.8)] 

(7.1) E (T, ) = I g(z)dz 1 [1 e"'cxPn(x)dx 
7Ti CPn(Z)(Z -T) 2 _1 z - x 

Since IPn(x) < 1, -1 <s x < 1, then 

(7.2) lji e"1Pn(x)dx 1 

where d(C, I) is the minimum distance between C and I = [-1,1]. 
From (7.1), and in view of (7.2), 

(7.3) En(T, CO)<,I-. I f g(z)l IdzI nT) 
7T d(C, I) Ic n(Z)l I Z -|T 

Let C8 be the ellipse, z = 2 +-p), D1 = Se'w, 0 s0< 2XT. For z E C, Kambo 
[10] has shown that 

(7.4) I~n(Z) I >-- 
n((32 - 2) ((2 n)>!)- 

(82 _ 1)22 2 n (>n !)2 

Now it can be shown that 

(7.5) 1 28_ 

d(Cs, I) ((S - 1)2 

and 

(7.6) 1 < 2(3 
d(C6,r) ,2 + 1 - T 

Thus, by introducing (7.4), (7.5), and (7.6) into (7.3), we have the upper bound 

(7.7) E(,) I. 2 (6 + )(n!)M(8)(8) 
(T 

(8 
_ 1)(Q2 - 2) 8n-2(82 + 1 - T)(2nl)! 

where M(S) = maxE cs Ig(z)I and 1(8) = length of the ellipse Cat. 

8. Numerical Examples. All computations in this section have been performed in 
single-precision arithmetic (14 significant decimal digits) on the Cyber 170-720. 

We illustrate our quadrature formulae with the following problems. 

(a) ReI(2,377) = f log(x+2) cs31 xdx 
- I ~X 2 

Applying the rule (4.3) to this integral we obtain the following results for various 
n. 

n Re In (G, 37T) 

5 2.90788246006 

8 2.907871430437 

10 2.907871888962 

13 2.907871878184 
16 2.907871878184 
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Though the exact answer is not known, the value in the last line is thought to be 
correct to the number of figures shown. 

1 

ImI(-.13,10)= ( sinhx sinl0xdx 
x + .1 3 

(b) = 2LIm f (Xx + 13 X + .1 3) 

z= 1 + 01i,1= -1. 
Similarly, on applying (4.3) to the integral we obtain: 

n Im I(-.13, 10) 

5 - .1363282406365 

8 - .1363278661647 

10 - .1363278661648 

16 - .1363278661646 
20 - .1363278661646 

Exact: - .1363278661646 

The exact value of the integral is obtained after a simple transformation on the last 
integral, and then using the results in [8, Eqs. (2.325, no. 1, 8.214, no. 2)]. 

For n = 5, the error bound (7.7) with 8 = 10 gives 1.58 x 10-3, the actual error 
being 3.74 x 10'-. 

1 

Im1(0, 12)= fn et sin12tdt 

(c) 
-1 

2 K 
1 

2K-i)1T 

= 2Si(12)-2 E j!' cos(12 + -i) 
K (K)!J=_ 12'+1 2~ 

Taking the series expansion of the exponential function and using the results in [8, 
Eqs. (2.633, no. 1; 2.641, no. 1)] we obtain the above analytical expression for the 
integral. 

Choosing odd values of n in the evaluation of this integral by formula (4.3) leads 
to the case of Section 5 in which 

x(n+1)12 
= T= 0. Thus, by applying (5.10) we 

obtain for this integral the following results: 

n Im ,1(0, 12) 

7 2.929140006753 

2.929140053492 

11 2.929140054094 

13 2.929140054093 
~ 15 2.929140054093 

Exact: 2.929140054093 
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For n = 5, the error bound (7.7) with 8 = 10 gives 1.58 x 10-3, the actual error 
being 3.74 x 10'. 
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